Centro Universitário de Volta Redonda – UniFOA Programa de Mestrado – PROMES Mestrado Profissional de Materiais

EXAME DE DEFESA:

REAPROVEITAMENTO DE PALLETS INDUSTRIAIS PARA PREPARAÇÃO E CARACTERIZAÇÃO MECÂNICA DE COMPÓSITOS POLIMÉRICOS

ALUNA:

VERA CRISTINA MARCZUK

ORIENTADORA:

DR.a DANIELLA REGINA MULINARI

Sumário

- Justificativa
- Objetivo
- Introdução
- Materiais e Métodos
- Resultados
- Conclusão

JUSTIFICATIVAS

- Diminuir os danos ao meio ambiente;
- Materiais mais resistentes;
- Competição com os materiais tradicionais; e
- Maior proteção e segurança dos animais de estimação.

Objetivo Geral

Desenvolver um compósito de polipropileno reforçado com fibras provenientes de pallets industriais que obtenha características mecânicas para viabilizar seu uso em caixas para transportes de animais.

OBJETIVOS ESPECÍFICOS

- Preparar os compósitos PP reforçados com fibras de pallets industriais: misturador termocinético e moldagem por injeção;
- Estudar composições variáveis das fibras na matriz;
- Estudar a influência do uso de agente compatibilizante; e
- Caracterizar os compósitos para avaliar a aplicação futuras em caixas de transporte de animais.

Caixa de Transporte para animais – Funcionalidades:

- Viajar no carro;
- Circulação de ônibus intermunicipais no país;
- Viagens de aviões.

COMPÓSITOS POLIMÉRICOS REFORÇADOS COM FIBRAS NATURAIS

Materiais ecologicamente corretos;

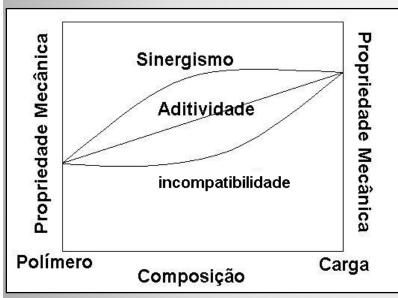
a crescente perspectiva de economia de energia por meio da redução de peso dos componentes;

BMW e as fibras naturais

Mercedes e as fibras naturais

os aspectos ligados à recuperação das matérias-primas;

 Vantagens das fibras naturais comparadas as fibras sintéticas.


VANTAGENS DAS FIBRAS NATURAIS COMPARADAS AS FIBRAS SINTÉTICAS:

- são produzidas por fontes renováveis;
- melhor capacidade de isolação térmica e sonora;
- baixo custo;
- baixa densidade;
- não são prejudiciais à saúde;
- são biodegradáveis;
- menos abrasivas ao equipamento de processamento; e
- podem ser incineradas.

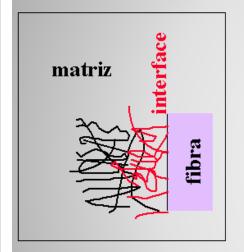
DESVANTAGENS:

- fraca adesão em seu estado natural a inúmeras matrizes; e
- tendência de formar aglomerados durante o processamento.

PREPARAÇÃO DOS COMPÓSITOS

Possíveis comportamentos de propriedades de um material compósito em função da composição dos componentes

ESTABILIDADE TÉRMICA DAS FIBRAS

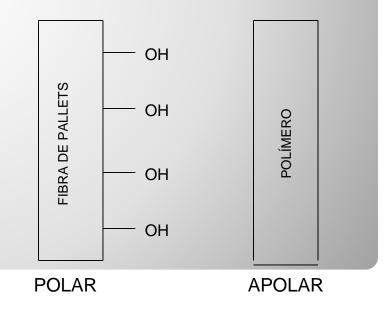

DISPERSÃO DAS FIBRAS NA MATRIZ

FRAÇÃO VOLUMÉTRICA

INTERFACE FIBRA/MATRIZ

PROCESSAMENTO

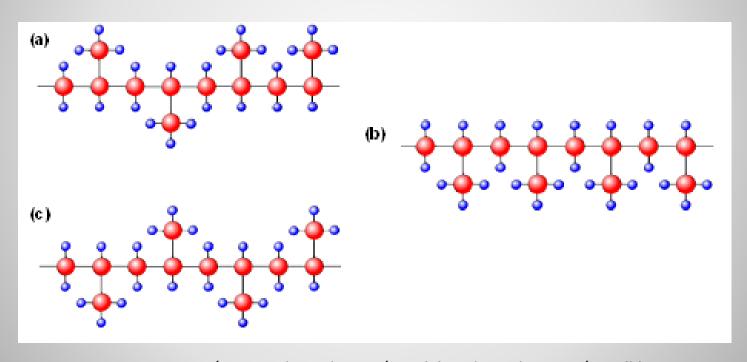
TRATAMENTO E MODIFICAÇÃO QUÍMICA DOS MATERIAIS LIGNOCELULÓSICOS

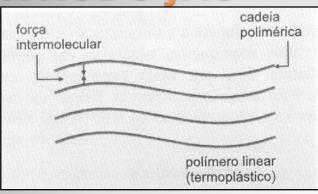


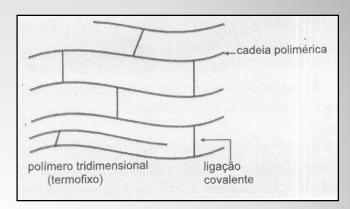
INTERFACE

- Grau de contato (molhabilidade)
- Forças coesivas (adesividade)

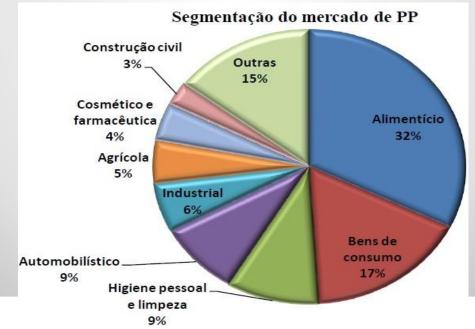
❖ A interface é a região onde ocorre o contato entre os componentes do compósito;


❖ A região interfacial é responsável pela transferência da solicitação mecânica da matriz para o reforço.


POLIPROPILENO COMO MATRIZ POLIMÉRICA


- Mantém a integridade estrutural do compósito;
- Versátil;
- Facilidade de processamento;
- Reciclável; e
- Boa resistência ao impacto.

Polipropileno


Estrutura isoméricas: polipropileno atático (a); polipropileno isotático (b); polipropileno sindiotático (c). (CUNHA, 2010)

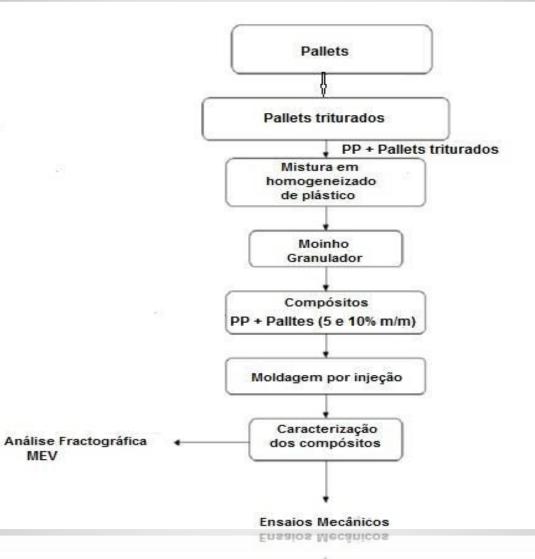
Termoplásticos

Termorrígidos

PROCESSAMENTO DOS COMPÓSITOS

- Misturador termocinético; e
- Máquina injetora.

Misturador termocinético


Máquina injetora

PROPRIEDADES MECÂNICAS

- Tração
- Flexão
- Impacto
- Dureza

ESTUDO DE ABSORÇÃO DE ÁGUA

Exposição ao intemperismo acelerado

MEV

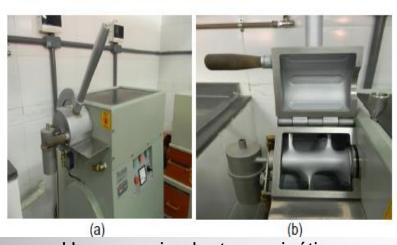
Plaina de Baldan

Fibras em flocos

Fibras trituradas e peneiradas com 10 e 28 mesh.

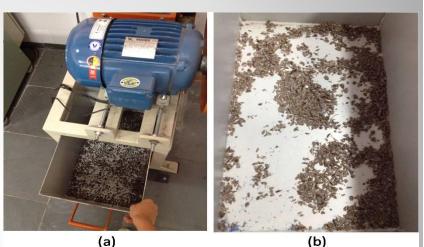
Caracterização das Fibras Provenientes dos Pallets Industriais

Difratometria de Raios X (DRX)


- Estrutura física;
- Parâmetros de rede; e
- Espaçamento interplanar.

Microscopia Eletrônica de Varredura (MEV)

- Morfologia; e
- Aspectos superficiais.


Processamento para a obtenção do compósito

Homogeneizador termocinético

Material obtido após a mistura

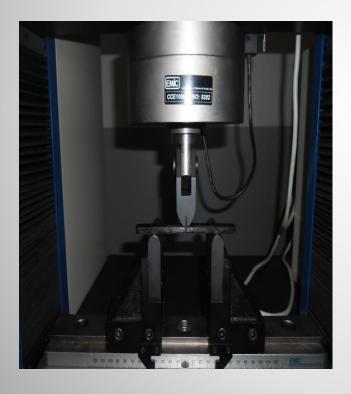
Moinho granulador

Máquina Injetora

Descrição dos compósitos de PP reforçados com fibras

Amostra	Quantidade de PP (% m/m)	Quantidade de reforço (% m/m)	Quantidade de PP-g-MAH (% m/m)
PP	100		
CP5%	95	5	
CP10%	90	10	
CPA5%	85	5	10
CPA10%	80	10	10

CP (compósitos PP reforçados com fibras de pallets *in natura*); CPA (compósitos PP reforçados com fibras de pallets *in natura* e compatibilizados com PP-g-MA)


ENSAIO DE TRAÇÃO

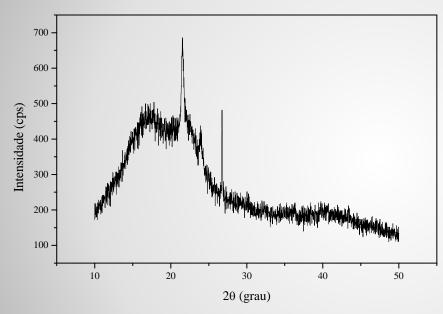
ENSAIO DE IMPACTO

ENSAIO DE FLEXÃO

ENSAIO DE DUREZA

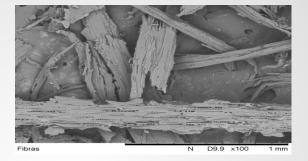
MATERIAIS E MÉTODOS ESTUDO DE ABSORÇÃO DE ÁGUA

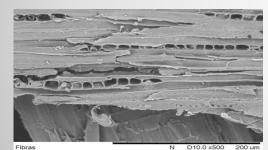
Corpos de provas imersos em água

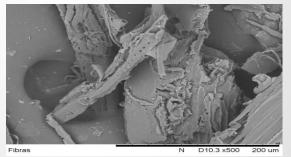

MATERIAIS E MÉTODOS EXPOSIÇÃO AO INTEMPERISMO ACELERADO

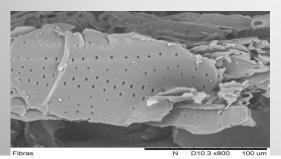
Câmara de intemperismo acelerado marca Equilan

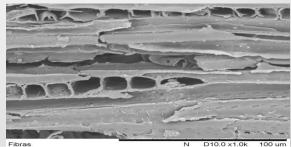
DIFRATOMETRIA DE RAIOS-X


Difratograma de Raios-X das fibras provenientes de pallets industriais

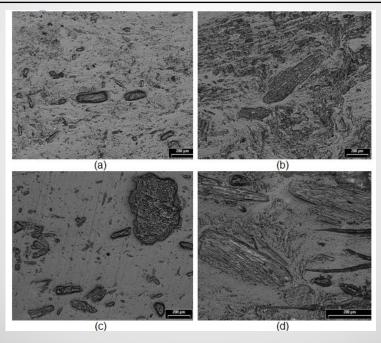

Índices de cristalinidade das fibras provenientes de pallets industriais


MATERIAL	l _{am}	I ₍₀₀₂₎	I _C
FIBRA <i>IN NATURA</i>	480,35	673,13	27,6%


MICROSCOPIA ELETRÔNICA DE VARREDURA



OBTENÇÃO DOS COMPÓSITOS

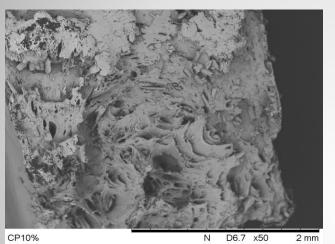


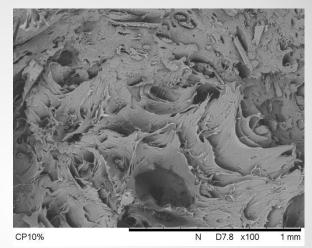
Corpos de prova obtidos para os ensaios mecânicos

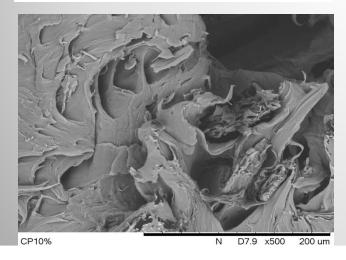
MICROSCOPIA ÓPTICA

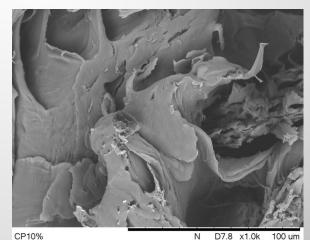
Dimensões das fibras antes e após a mistura com PP.

Tipos de fibras	Antes da mistura		Após a mistura	
	C (µm)	D (μm)	C (µm)	D (µm)
Pinus (pallets)	190 - 900	10 -30	100 – 550	5 – 20


MO dos compósitos: a) CP5%- 50X; (b) CP10%- 50X; (c) CPA5%- 50X; (d) CPA10%- 50X.


ENSAIOS DE TRAÇÃO


Valores do limite de resistência à tração

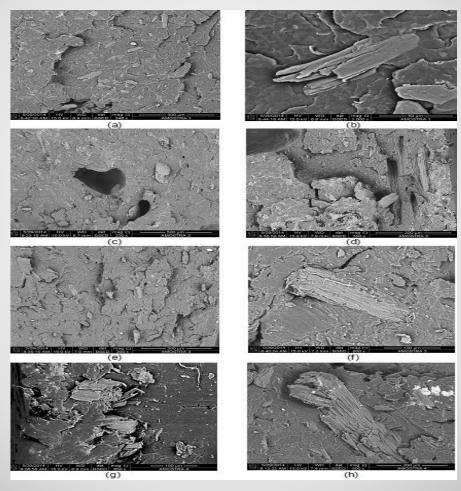

AMOSTRAS	Alongamento (%)	Limite de resistência	Tensão de	Módulo de
		à tração (MPa)	Escoamento	Elasticidade (MPa)
			(MPa)	
PP	$26,41 \pm 3,9$	25,15 ± 1,4	$14,62 \pm 1,28$	1018,2 ± 55,8
CP5%	$26,\!74\pm2,\!1$	$21,9\pm1,4$	$12,82 \pm 0,72$	879,1 ± 31,2
CP10%	$23,91 \pm 2,65$	$22,3\pm1,4$	$14,\!49\pm0,\!37$	$990,3 \pm 59,4$
CPA5%	$24,65 \pm 0,65$	$27,3\pm0,3$	$16,84 \pm 0,48$	1189.8 ± 70,2
CPA10%	21,62 ± 1,77	26.8 ± 0.75	$17,15 \pm 0,86$	1361,5 ± 89,5

MEV DOS COMPÓSITOS APÓS ENSAIOS DE TRAÇÃO

ENSAIOS DE FLEXÃO

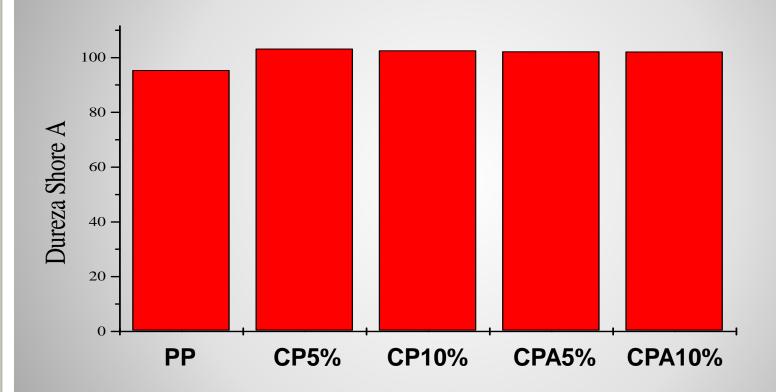
AMOSTRAS	Resistência à flexão (MPa)	Módulo de Elasticidade	
	Resistencia a nexao (MPa)	(MPa)	
PP	28,4 ± 12,9	824,8 ± 46,6	
CP5%	40,45 ± 4,9	1176 ± 184,8	
CP10%	33,8 ± 1,1	1153 ± 52,4	
CPA5%	29,6 ± 2,9	933,1 ± 106,8	
CPA10%	38,2 ± 3,1	1377 ± 147,8	

ENSAIOS DE IMPACTO

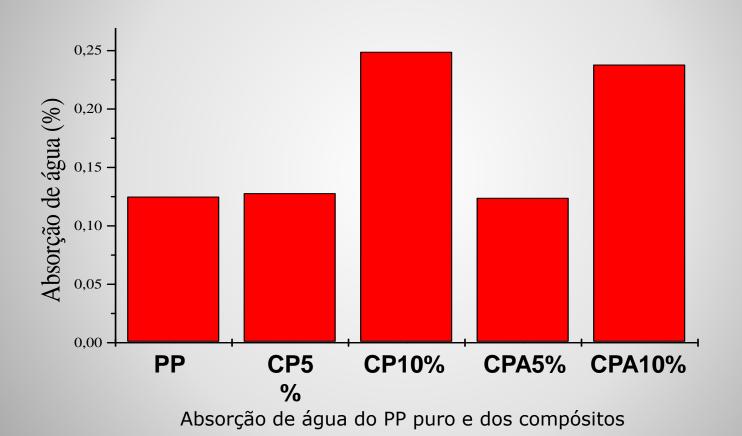

Valores do limite de resistência ao impacto

AMOSTRAS Energia (J) Resistência ao Impacto

 (kJ/m^2)


PP	4 ± 0,2	45,1 ± 0,2
CP5%	4 ± 0,3	50,6± 0,9
CP10%	$3,75\pm0,1$	$47,9 \pm 0,6$
CPA5%	4 ± 0,2	51,5± 1,1
CPA10%	$3,75\pm0,2$	54,7±1,1

ANÁLISE DE FRATURA


MEV dos compósitos após o ensaio de impacto: (a, b) CP5%; (c, d) CP10%; (e, f) CPA5%; (g, h) CPA10%.

ENSAIOS DE DUREZA

Dureza Shore A do PP puro e dos compósitos

RESULTADOS ESTUDO DE ABSORÇÃO DE ÁGUA

EXPOSIÇÃO AO INTEMPERISMO ACELERADO

AMOSTRAS	Resistência à tração antes do	Resistência à tração após o
	intemperismo (MPa)	intemperismo (MPa)
PP	25,15 ± 1,4	26,6± 0,5
CP5%	21,9 ± 1,4	20,3 ± 0,2
CP10%	22,3 ± 1,1	20,6 ± 0,8
CPA5%	27,3 ± 0,3	22,4 ± 1,2
CPA10%	26,8 ± 0,8	24,8 ± 1,9

CONCLUSÕES PRELIMINARES

CARACTERIZAÇÃO DAS FIBRAS:

- As fibras provenientes dos pallets industriais apresentaram característica de um material semicristalino e com o índice de cristalinidade inferior quando comparados a outras fibras;
- A morfologia das fibras evidenciou uma superfície homogênea, a qual não contribuiu para interação fibra/ matriz;

CARACTERIZAÇÃO E OBTENÇÃO DOS COMPÓSITOS:

- o uso da moldagem por injeção foi interessante, pois tornou o processo rápido e reprodutível fazendo com que seja perfeitamente viável o uso deste material em escala industrial;
- com a adição de fibras na matriz de PP e o agente compatibilizante obteve-se um material com até 10% menos polímero e com propriedades mecânicas viáveis para determinadas aplicações do PP, em que o custo e o módulo elástico são mais importantes que a ductilidade.
- no ensaio de absorção de água, a adição de PP-g-MAH influenciou nos resultados, pois os mesmos apresentaram menor percentual de absorção quando comparados aos demais compósitos;
- a exposição ao intemperismo acelerado nos compósitos não afetou as propriedades mecânicas;

Com base nesses resultados conclui-se que as fibras provenientes de pallets industriais podem ser aplicados em matrizes poliméricas para um futuro desenvolvimento de um novo material (caixa de transporte de animais), criando assim um material sustentável.