

FUNDAÇÃO OSWALDO ARANHA Centro Universitário de Volta Redonda

Defesa de Mestrado

Desenvolvimento de um compósito cerâmico para otimizar a radiação térmica em materiais refratários Al₂O₃-SiO₂-Cr₂O₃-SiC-Ca(AlO₂)₂

Aluno: Joaquim de Paula Pereira

Orientador: Prof. Dr. Ricardo de Freitas Cabral

FUNDAÇÃO OSWALDO ARANHA Centro Universitário de Volta Redonda

Desenvolvimento de um compósito cerâmico para otimizar a radiação térmica em materiais refratários Al₂O₃-SiO₂-Cr₂O₃-SiC-Ca(AlO₂)₂

Banca Avaliadora:

Prof. Dr. Sebastião Ribeiro

Prof. Dr. Luiz de Araújo Bicalho

SEQUÊNCIA DE APRESENTAÇÃO DO TRABALHO

1. INTRODUÇÃO

Todos os materiais refratários submetidos a altas taxas de temperatura possuem suas respectivas taxas de irradiação térmica que podem ser medidas através de sua emissividade.

Quando devolvemos mais energia e de forma mais rápida para o interior dos fornos aquecidos, em forma de radiação térmica, essa energia é reabsorvida pelos corpos sólidos.

Com a comprovação do aumento da emissividade através do compósito fabricado, espera-se o benefício em economia e conservação de energia em fornos de reaquecimento de placas e regeneradores.

2. OBJETIVO

Desenvolver um compósito que aumente a radiação térmica dos materiais refratários quando aplicado em sua superfície e submetidos a altas taxas de temperaturas.

Esse compósito deve suportar temperaturas de até 1450°C e manter-se agregado à peça refratária sem perder suas características de refratariedade.

3. JUSTIFICATIVA

Segundo relatório da ONU, 348 EJ de energia foram produzidos no mundo em 1994. É esperado que as reservas naturais não renováveis durem, em média, mais 113 anos (CEPA, 2016).

O desenvolvimento desse revestimento refratário possibilitou o aumento da emissividade nos materiais refratários, característica que está diretamente relacionada ao aumento da radiação térmica e consequentemente à conservação de energia.

REVISÃO BIBLIOGRÁFICA

REVISÃO BIBLIOGRÁFICA

Centro Universitario de Voita Redonda

4.1.1. Altos fornos a coque

De acordo com o Centro de Gestão e Estudos Estratégicos (CGEE), em 2010

os altos-fornos a coque foram responsáveis por cerca de 93% do total da produção.

Esquemático de altos fornos.

Fonte: Gerdau S.A.

4.1.2 Regeneradores de Altos Fornos

Os regeneradores são responsáveis pelo aquecimento do ar de processo que alimenta as ventaneiras dos altos-fornos, são grandes trocadores de calor. A temperatura do ar aquecido fica entre 900°C e 1250°C. São fabricados com tijolos cerâmicos refratários.

Regeneradores

Fonte: Paul Wurth.

4.1.3. Fornos de reaquecimento de placas ou tarugos

Sua função é elevar a temperatura dos produtos semiacabados, (placas ou tarugos), até que o material esteja suficientemente plástico para ser laminado. São totalmente revestidos com materiais refratários.

4.4. Teoria da emissividade.

Para entendermos o funcionamento básico da emissividade, é necessário conhecer o espectro da radiação eletromagnética. A porção do espectro, entre 01 e 100 µm, é chamada de radiação térmica, porque afeta o estado térmico da matéria.

REVISÃO BIBLIOGRÁFICA

Precisamos considerar as conclusões de SIEGEL onde diz que as frações de

radiações refletidas, absorvidas e transmitidas dependem diretamente da rugosidade

superficial, temperatura, comprimento da onda e o ângulo de incidência da radiação.

Figura 23 - Absorção da radiação incidente

REVISÃO BIBLIOGRÁFICA

Tabela 5. Valores típicos de emissividade para alguns materiais

Descrição/Composição	Emissividade (ε)*		
Aço inoxidável – típico, polido	0,17		
Alumínio – altamente polido, película	0,04		
Água	0,96		
Areia	0,90		
Concreto	0,88 – 0,93		
Janela de vidro	0,90 – 0,95		
Materiais de construção – placas de amianto	0,93 – 0,96		
Materiais de construção – tijolo, vermelho	0,93 – 0,96		
Materiais de construção – estuque ou placa de gesso	0,90 - 0,92		
Materiais de construção - madeira	0,82 - 0,92		
Papel, branco	0,92 - 0,97		
Pavimentação de asfalto	0,85 – 0,93		
Rochas	0,88 – 0,95		
Solo	0,93 – 0,96		
Tecido	0,75 – 0,90		
Tintas – pretas (Parsons)	0,98		
Tintas – branca acrílica	0,90		
Tintas – branca óxido de zinco	0,92		
Vegetação	0,92 - 0,96		

Fonte: Incropera e Dewitt, 2003.

Figura 25 – Organograma do trabalho.

5.1.1. Tijolo ALUKOR 85

Os corpos de prova foram retirados de tijolos refratários ALUKOR 85 fabricados pela Empresa Magnesita.

Tijolo ALUKOR 85, Magnesita.

Fonte: Autor, 2015.

5.1.2. Checker

As peças de Checker utilizadas como corpos de provas, foram fabricadas pela Empresa IBAR Ltda.

Vista lateral de um checker.

5.1.3. Óxido de alumínio calcinado

Alumina (Al_2O_3) com pureza de 98,5%, grãos 100% abaixo de 45 µm.

Óxido de alumínio calcinado.

Fonte: Autor, 2015.

5.1.4. Óxido de silício cristalino

Sílica (SiO₂), com pureza de 99,0%

e grãos 100% abaixo de 45 µm.

Óxido de silício cristalino (Quartzo).

5.1.5. Carbeto de silício

Grãos com tamanho 100% abaixo de 90 µm, e com 98,0% de pureza.

5.1.6. Óxido de cromo

Utilizou-se 98,5% de pureza e grãos 100% abaixo de 45 µm.

Carbeto de silício.

Óxido de cromo.

5.1.7. Aluminato de cálcio

O agente aglutinante foi o Aluminato de cálcio a 70% de alumina com pureza de 97,5% e tamanho dos grãos 100% abaixo de 45 µm.

LUMINATO DE CÁLCIO TOS

Aluminato de cálcio (70% Alumina).

5.2. MÉTODOS

Estabeleceu-se um parâmetro para comparar as taxas de emissividades dos revestimentos fabricados. Os corpos de provas sem o compósito serviram como ponto de partida para medir aumento da emissividade.

5.2.1. Corte dos corpos de provas e determinação do volume.

O tijolo ALUKOR 85 foi cortado em oito cubos com dimensões de 50 x 50 x 50 (mm).

Tijolo ALUKOR 85 cortado.

5.2.4 Preparação dos compósitos

Foram preparados dois compósitos com formulações diferentes, o objetivo foi

comparar a eficiência entre eles e provar que a emissividade pode variar em função da

quantidade aplicada de cada componente.

COMPONENTES	FÓRMULA	% EM PESO	PESO EM GRAMAS	
ALUMINA	AI2O3	70%	1000	
SÍLICA	SiO2	4%	57	
CROMO	Cr2O3	8%	114	
CARBETO DE SILÍCIO	SiC	10%	143	
ALUMINATO DE CÁLCIO	CaO	8%	114	
PESO TOTAL		100%	1429	
ÁGUA	H2O	10%	143	

Quantidades do compósito 1.

O compósito 2 foi utilizado 40,8% de alumina e 40,8% de sílica, com essa

especificação esse compósito somente suportaria temperaturas abaixo de 1400°C.

Quantidades do compósito 2.

COMPONENTES	FÓRMULA	% EM PESO	PESO EM GRAMAS
ALUMINA	AI2O3	40,8%	424
SÍLICA	SiO2	40,8%	424
CROMO	Cr2O3	5,9%	61
CARBETO DE SILÍCIO	SiC	4,6%	48
ALUMINATO DE CÁLCIO	CaO	8,0%	83
PESO TOTAL		100,0%	1040
ÁGUA	H2O	10%	104

As figuras mostram os componentes antes da mistura, misturados e após a adição de água. Imediatamente após a adição de água o aluminato de cálcio começa a reagir iniciando o processo de endurecimento.

Componentes e suas fases de misturas.

Fonte: Autor, 2015.

Componentes hidratados com 10% de água.

5.2.5. Aplicação do compósito nos corpos de provas.

Após a adição de água, o compósito deve ser aplicado em um tempo máximo

de 30 minutos.

Peças de Checker 50% pintadas com coating.

✓ Corpos de provas

- Cubo 1: 50mm x 50mm x 50mm Compósito 1.
- Cubo 2: 50mm x 50mm x 50mm Compósito 2.
- Placa 1: 150mm x 50 mm x 15mm Compósitos 1 e 2.

Placa 2: 100mm x 50mm x 15mm - Compósito 1.

Corpos de provas revestidos emissiva.

5.2.6. Secagem dos corpos de provas revestidos

Os corpos de provas revestidos foram colocados para secar em uma estufa do laboratório da UniFOA, a curva de aquecimento foi de 24 horas e patamar de 1000°C.

Curva de aquecimento aplicada.

Corpos de prova na estufa antes de secar.

Fonte: Autor, 2015

5.2.7. Termografia

Termografia é a ciência que trata da reprodução de imagens a partir da emissão de radiação infravermelha.

Máquina termográfica Flir.

Fonte: Autor, 2016.

5.2.8. Microscopia Eletrônica de Varredura

A técnica possibilita investigar a superfície de amostras com magnificações da ordem de centenas de milhares de vezes.

Microscópio Eletrônica de Varredura (MEV)

Autor: Autor, 2015.

5.2.9. Preparação da Placa 1 – Peça única.

A Placa 1 foi dividida em três partes de 50mm, sem contudo, ser cortada. A parte 1 foi revestida com o compósito 1, a parte central ficou sem revestimento para servir de parâmetro nas medições e a parte 3 foi revestida com o compósito 2.

Corpo de provas preparado para testes (Placa 1).

5.2.10. Preparação dos cubos – Peças separadas.

O mesmo procedimento foi realizado para os cubos, e os testes realizados separadamente.

corpos de provas preparados para testes (Cubos).

5.2.11. Preparação da Placa 2 – Peça única.

Para evitar o efeito de lateralidade que poderia ser causado na placa 1 onde as partes revestidas estavam nas laterais da peça e, portanto, mais sujeitos a perdas de temperaturas, fizemos os mesmos testes na Placa 2.

Corpo de provas preparado para testes (Placa 2).

RESULTADOS E DISCUSSÕES

ConiFOA Centro Universitario de Volta Redonda

6.1. Massa Específica Aparente e Porosidade Aparente.

Após a aplicação dos compósitos 1 e 2, foi estudado o impacto que causaria na

massa específica aparente – MEA e na porosidade aparente – PA.

MEA e Porosidade Aparente sem revestimento.

CORPOS DE PROVA SEM COATING							
DIMENSÕES		VOLUME	PESO SÊCO A 110ºC	MASSA ESPECÍFICA	POROSIDADE		
CÚDICA	(mm)			(mm) (arrange)	(cm3)	APARENTE	APARENTE
CUDICA	Α	В	C		(gramas)	(g/cm³)	(%)
1	50	50	50	125,0	362	2,90	22,40
2	50	50	50	125,0	370	2,96	19,20
3	49	50	50	122,5	360	2,94	21,22
4	49	50	51	125,0	366	2,93	19,21
5	50	50	50	125,0	366	2,93	19,20
6	51	50	49	125,0	368	2,95	17,61
7	50	50	50	125,0	370	2,96	20,00
8	51	50	50	127,5	370	2,90	21,96

MEA e Porosidade Aparente com revestimento.

	CORPOS DE PROVA COM COATING						
AMOSTRA DIMENSÕES CÚBICA (mm)	ES	VOLUME	PESO SÊCO A 110ºC	MASSA ESPECÍFICA	POROSIDADE		
	(mm)			(cm ³)	APARENTE	APARENTE	
	A	В	C		(gramas)	(g/cm³)	(%)
1	50,5	51	51	131,4	381	2,90	15,23
2	51	51	51	132,7	390	2,94	15,08
3	50	51	50,5	128,8	377	2,93	10,87
4	49,5	51	51,5	130,0	379	2,92	12,31
5	51	50,5	50,5	130,1	379	2,91	13,07
6	51,5	50,5	50	130,0	382	2,94	15,38
7	50,5	50,5	51	130,1	384	2,95	11,53
8	51,5	50,5	51	132,6	384	2,90	10,56

Fonte: Autor, 2015.

6.2. Camada de aplicação do revestimento.

Foi comprovado que a espessura do compósito aplicado é determinante para os resultados finais.

Quanto maior a espessura aplicada, menor seria sua interação com a peça refratária, ocasionando trincas, descolamentos e prejudicando sua aderência. Esses efeitos estão ligados às dilatações e contrações térmicas dos refratários.

Como o efeito do aumento da emissividade é superficial, a espessura aplicada deve variar entre 0,2 mm e 0,5 mm, acima dessa espessura ocorre desperdício de material, além de influenciar diretamente em sua performance.

6.3. Microscopia Eletrônica de Varredura

Os compósitos 1 e 2 são formados pelos conglomerados dos óxidos que compõem o revestimento, resultado da sinterização ocorrida até a temperatura de 1000°C.

Pode-se observar nitidamente nas figuras seguintes que o revestimento está totalmente agregado ao substrato e que a diferença entre os compósitos não alterou essa característica.

A imagem mostra uma diferença entre a granulometria do compósito e o substrato, confirmando os resultados obtidos nos testes de porosidade aparente que indicaram apenas 13,0% de porosidade no compósito, contra 20,1% no substrato.

Na imagem 20x aparecem as microfissuras causadas por expansão e contração

durante o processo de aquecimento e resfriamento do corpo de provas.

Micrografia do compósito 1, imagem a 20x.

RESULTADOS E DISCUSSÕES

Nas imagens de 50x e 100x é possível distinguir a interface, e observar que a camada aplicada de 0,3 mm ficou totalmente integrada à peça. Esse é o efeito esperado, uma vez que o revestimento deve suportar as expansões e retrações do substrato. As microfissuras apresentadas não influenciaram no desempenho.

Micrografia do compósito 1, imagens a 50x e 100x.

Fonte: Laboratório UNIFOA, 2015.

A aderência entre os materiais sofre influência direta da porosidade, pois aumentam a superfície de contato e criam ancoragens naturais promovendo maior aderência e resistência mecânica ao compósito.

Micrografia do compósito 1, imagem a 250x.

RESULTADOS E DISCUSSÕES

As micrografias abaixo são do compósito 1, tem-se aparência rochosa e maciça, de fácil distinção entre seus componentes, bem consolidada revelando que teve boa aderência promovida pelo aluminato de cálcio e coerente com a porosidade obtida.

Micrografia do compósito 1, imagem 500x.

Micrografia do compósito 1, Imagem a 800x.

ol	F	D8.0	x800	100 un
Fonte: Laborató	rio UNI	FOA	201	15

RESULTADOS E DISCUSSÕES

6.4.1. Termogramas Placa 1 – Peça única.

A máquina termográfica foi configurada com uma emissividade 0,83 e observouse que as partes revestidas apresentavam menores temperaturas, provando que as propriedades de reemitir energia auxiliou na redução do calor absorvido.

6.4.2. Termográficos dos cubos – Peças separadas

Os termogramas das figuras mostram que a experiência foi conclusiva e obteve-se o resultado esperado. Os corpos de provas revestidos apresentaram menor temperatura em um mesmo momento, evidência de que o compósito está emitindo maior energia, logo retendo menor caloria.

Termogramas dos cubos.

Contro Universitario de Volta Redonda

6.4.3. Termográficos da Placa 2 – Peça única

Os resultados encontrados confirmaram sua eficiência pois a parte da peça revestida estava com uma temperatura de 627°C, enquanto a parte não revestida apresentou temperatura de 673°C, resultado de uma menor reflexão.

Termogramas da placa 2.

CONCLUSÕES

CONCLUSÕES

7. CONCLUSÕES

 A massa específica aparente (MEA) não apresentou variações significativas com a aplicação dos compósitos 1 ou 2;

 ✓ A porosidade aparente reduziu da média de 20,1% para 13,0%. O compósito mostrou-se bastante elástico e altamente agregado ao substrato propiciando uma camada mais homogênea e estável;

 A espessura variando de 0,2mm a 0,5mm desenvolveu sua função de aumentar a emissividade superficial, além de não apresentar oxidações.

CONCLUSÕES

As micrografias por MEV foram decisivas para o entendimento de como os diversos componentes se organizam nos compósitos, e evidenciou que a porosidade do substrato foi um dos agentes que permitiu a coesão entre as partes, servindo como ancoras naturais.

✓ Os três corpos de provas foram aquecidos à mesma temperatura, e onde havia o revestimento, a temperatura foi mais baixa devido à maior emissividade.

 Quanto maior a radiação refletida em função de uma maior emissividade, menor será a temperatura do objeto, provando que a energia refletida será absorvida novamente pelo processo.

SUGESTÕES PARA TRABALHOS FUTUROS

8. SUGESTÕES PARA TRABALHOS FUTUROS

Uma vez que o aumento da emissividade está confirmado, fica como sugestão para trabalhos futuros os seguintes tópicos:

- Pesquisa que associe o aumento da emissividade à economia de energia utilizada para aquecimento dos fornos nos processos siderúrgicos;
- Inclusão de outros componentes refratários que auxiliem no aumento da emissividade;
- Avaliação do compósito em temperaturas acima e 1450°C e sua relação com a oxidação superficial;
- Relação entre a durabilidade do revestimento e o declínio do poder emissivo do compósito;