

ELABORAÇÃO DE ENDURECEDOR QUÍMICO DE SUPERFÍCIE À BASE DE SILICATO DE SÓDIO E SILICATO DE LÍTIO PARA APLICAÇÃO EM PAVIMENTOS DE CONCRETO

Aluno: Igor Marques Paraguassú

Orientador: Prof. Dr. Ricardo de Freitas Cabral

VOLTA REDONDA

SUMÁRIO

- OBJETIVO
- JUSTIFICATIVA
- REVISÃO BIBLIOGRÁFICA
- MATERIAIS E MÉTODOS
- RESULTADOS E DISCUSSÕES
- CONCLUSÃO
- SUGESTÕES PARA TRABALHOS FUTUROS
- BIBLIOGRAFIA

OBJETIVO

O objetivo deste trabalho foi desenvolver um endurecedor químico de superfície à base de silicato de lítio e silicato de sódio para tratamento superficial de pisos industriais em concreto submetidos ao desgaste à abrasão e analisar outros aspectos quando da aplicação do produto, como resistência a compressão, tração na flexão, índice de vazios, absorção de água e MEV.

JUSTIFICATIVA

Os projetos para execução de pisos industriais são relativamente novos no Brasil, e em sua grande maioria são desenvolvidos para atender as cargas de utilização, porém existe uma característica que é pouco mencionada nestes trabalhos, que é a resistência à abrasão. A resistência à abrasão é de grande importância quando se trata de ambientes onde haverá o trafego intenso de veículos e pessoas, e afeta diretamente a qualidade no uso do pavimento.

Este trabalho contribuirá muito para o desenvolvimento da indústria de químicos para construção civil, e o produto resultado deste trabalho terá grande aplicação para o combate ao desgaste à abrasão dos pisos industriais.

REVISÃO BIBLIOGRÁFICA

CONCRETO

Material compósito

Componentes: Areia, Brita, Cimento e Água

A água é o catalisador da mistura

É a base em que será analisado o produto

PAVIMENTOS DE CONCRETO

São divididos em 2 Tipos:

Pavimentos Flexíveis

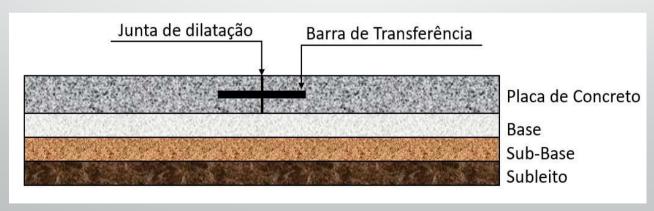
São constituídos de blocos de concreto intertravados que formam uma camada única.

Pavimentos Rígidos

Podem ser divididos ainda em outros 2 tipos:

Pavimentos de concreto simples

Pavimentos de concreto armado


PAVIMENTOS RÍGIDOS

Pavimentos de Concreto Simples

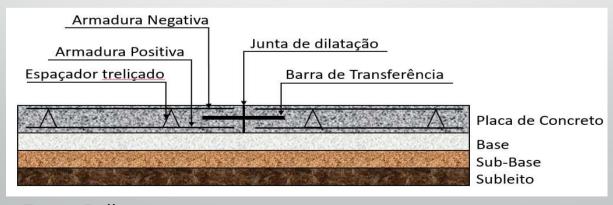
Placas de 4,5 m a 6,0 m

Concreto apoiado sobre o solo

Barras de transferência para melhor distribuição das cargas

Fonte: Balbo, 2009

PAVIMENTOS RÍGIDOS


Pavimentos de Concreto Armado

Placas de 6,0 m a 8,0 m

Concreto apoiado sobre o solo

Seção com armadura para suportar esforços de flexão

Barras de transferência para melhor distribuição das cargas

Fonte: Balbo, 2009

PROPRIEDADES DO CONCRETO PARA PAVIMENTOS

Dentre as propriedades desejáveis do concreto para pavimentos podem ser citadas:

- Exsudação
- Resistência a compressão
- Resistência a tração na flexão
- Resistência a abrasão
- Índice de vazios

E serão analisadas através de ensaios mecânicos.

ENDURECEDORES DE SUPERFÍCIE A BASE DE SILICATOS

Utilização no Concreto

Impermeabilização

Densificação

Selagem/Pintura

Endurecimento de superfícies

Tipos Estudados

Silicato de Sódio

Silicato de Lítio

MATERIAIS E MÉTODOS

MATERIAIS

Concreto Usinado FCK 30 Mpa - Concreteira Fortemix

Líquido Endurecedor de Superfície de Silicato de Sódio - Pisoclean

Líquido Endurecedor de Superfície de Silicato de Lítio - Pisoclean

MATERIAIS

CONCRETO

Concreto Usinado	Fck 30 MPa	Slump 120+/-20mm	Data:	10/11/2016	
Material	Umidade (%)	Consumo Teórico (kg)	Consumo Real (kg)	Desvio (%)	
Pó de Pedra		450,00	436,92	-2,91	
Areia	5,00%	578,95	584,49	0,96	
Brita 1		650,00	645,25	-0,73	
Brita o		350,00	393,52	12,43	
Cimento CP III - 32		385,00	413,77	7,47	
Aditivo MX		1,80	1,89	5,00	
Água		121,05	121,04	-0,01	
Obs.: Ajuste de água de 6o kg devido a umidade da areia					

Fonte: Fortemix Concreteira

ENDURECEDOR DE SILICATO DE SÓDIO

FÓRMULA QUÍMICA:

Na₂SiO₃

REAÇÃO NA MATRIZ DE CONCRETO:

O silicato reage com o hidróxido de cálcio e com o cimento Portland, formando o CSH (silicato de cálcio hidratado), onde o CSH é um dos responsáveis pela dureza e resistência do concreto.

O CSH formado a partir do silicato de sódio, forma cristais que preenchem os poros do concreto, conferindo uma maior dureza e densificação da superfície tratada.

ENDURECEDOR DE SILICATO DE LÍTIO

FÓRMULA QUÍMICA:

Li₂SiO₃

REAÇÃO NA MATRIZ DE CONCRETO:

O silicato reage com o hidróxido de cálcio e com o cimento Portland, formando o CSH (silicato de cálcio hidratado), onde o CSH é um dos responsáveis pela dureza e resistência do concreto.

O CSH formado a partir do silicato de lítio, forma cristais que preenchem os poros do concreto, conferindo uma maior dureza e densificação da superfície tratada. Porém os cristais formados pelo silicato de lítio são menores, devido ao seu raio atômico, conferindo um empacotamento melhor do que o do silicato de sódio.

ELABORAÇÃO DO ENDURECEDOR QUÍMICO DE SILICATO DE SÓDIO E LÍTIO

Para elaboração do novo produto, foi realizada a mistura em proporção de 1:1, dos endurecedores de silicato de sódio (NA) e silicato de lítio (LI), formando o endurecedor de silicato de sódio/lítio (NL).

Foram confeccionados corpos de prova para realização dos ensaios mecânicos, conforme tabela abaixo:

Confecção de Corpos de Prova				
Ensaio	CP's	Dimensão (cm)	Quantidade	Norma
Resistência a compressão	Cilíndrico	10X20	4 Conj. de 5 CP's	NBR 5738/2007
Resistência a tração na flexão	Prismático	10X10X35	4 Conj. de 5 CP's	NBR 5738/2007
Resistência a abrasão	Prismático	7×7×4	2 Conj. de 4 CP's	NBR 5738/2007
Índice de vazios	Prismático	10X10X4	2 Conj. de 4 CP's	NBR 9778/1987

Foi realizado também o MEV das amostras fraturadas, para análise da microestrutura dos corpos de prova.

APLICAÇÃO DO ENDURECEDOR

Após moldados e curados por um período de 28 dias, foi realizada a aplicação dos produtos conforme recomenda o fabricante:

1º Passo: Saturar a superfície do pavimento e aguardar 3º minutos.

2º Passo: Repetir o passo 1 mais 2x até que o pavimento não absorva o produto.

3º Passo: Lavar o pavimento com água e tirar o excesso com auxílio de rodo.

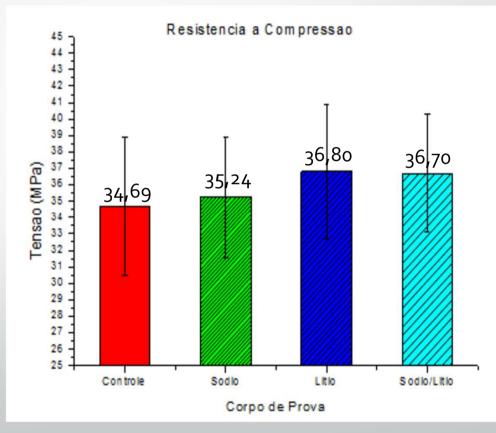
Foram realizados os seguintes ensaios para caracterizar as amostras:

Slump Test

Resistência a compressão

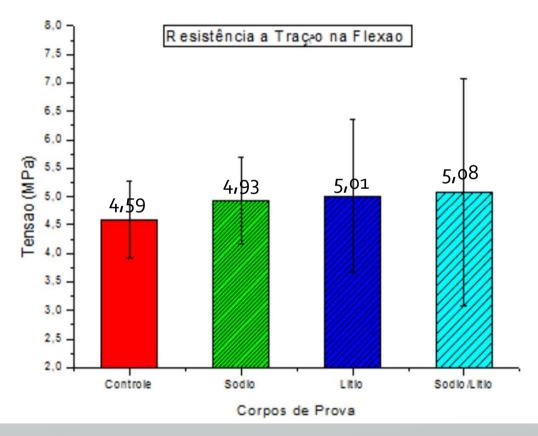
Resistência a tração na flexão

Resistência a abrasão

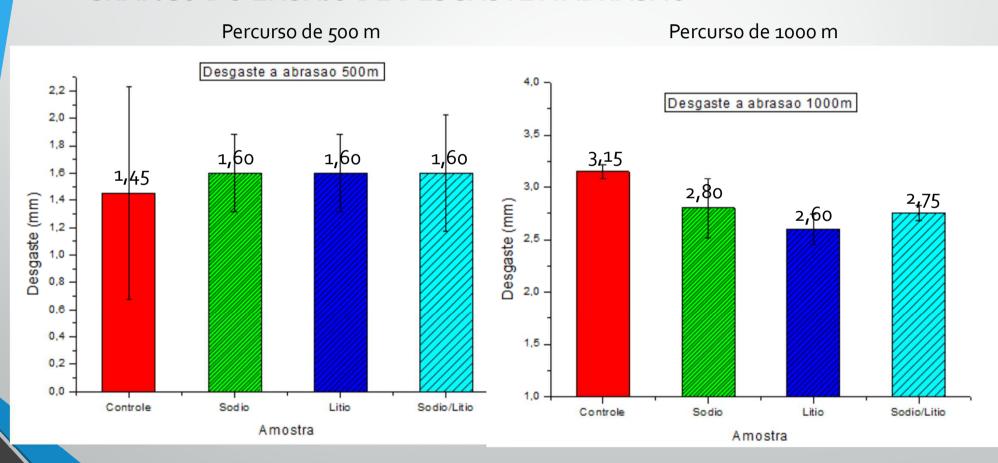

Índice de vazios

Absorção de água

MEV

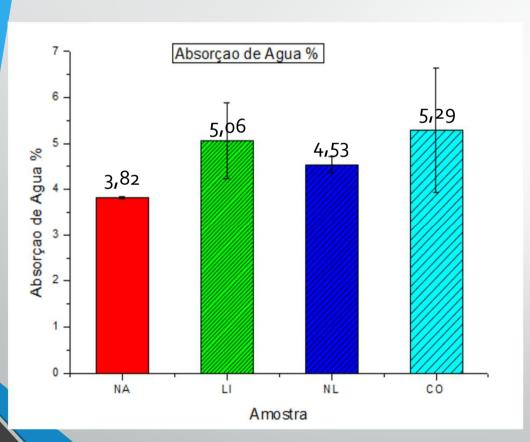

ENSAIO DE RESISTÊNCIA A COMPRESSÃO

- Fator no qual o silicato de lítio obteve melhor desempenho:
- Formação cristalográfica menor, preenchendo melhor os poros do concreto.



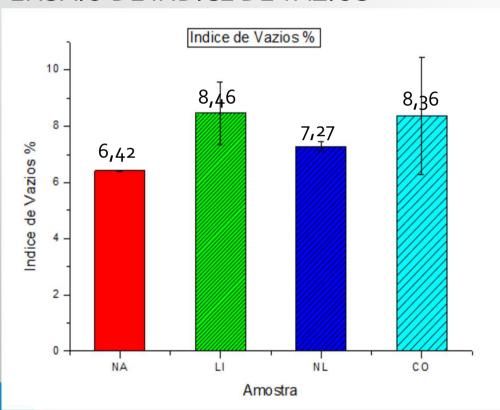
ENSAIO DE RESISTÊNCIA A TRAÇÃO NA FLEXÃO

- Vale ressaltar que, no que tange a questão estrutural de um piso de concreto, a principal característica adotada no dimensionamento, é a resistência a tração na flexão.
- A densificação da superfície no sódio/lítio, aconteceu de maneira a agregar mais resistência na tração na flexão.


GRÁFICO DO ENSAIO DE DESGASTE À ABRASÃO

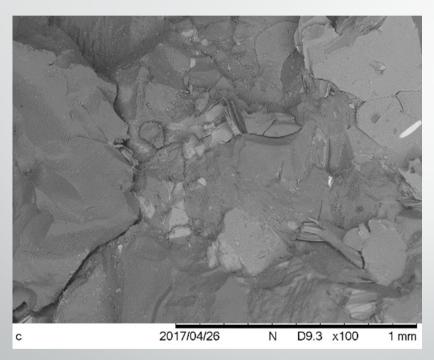
Observar desvio padrão da amostra controle no ensaio de 500m.

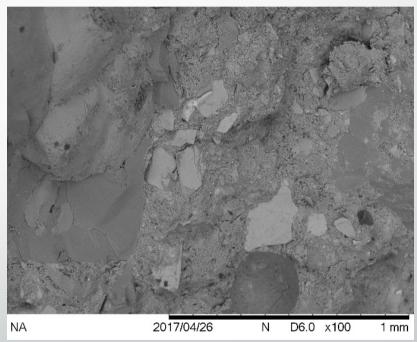
ENSAIO DE DESGASTE À ABRASÃO					
Corpo de prova Prismático 7x7x4 cm				Idade:	> 28 dias
Corpo de Prova		Desgaste 500m (mm)	Desv. Padrão	Desgaste 1000m (mm)	Desv. Padrão
со	1	2,00		3,20	0,07
	2	0,90	0,78	3,10	
	Média	1, 45		3,15	
NA	1	1,40	0,28	2,60	0,28
	2	1,80		3,00	
	Média	1,60		2,80	
LI	1	1,40		2,50	0,14
	2	1,80	0,28	2,70	
	Média	1,60		2,60	
NL	1	1,90		2,80	0,07
	2	1,30	0,42	2,70	
	Média	1 , 60		2,75	


ENSAIO DE ABSORÇÃO DE ÁGUA

O produto com melhor desempenho foi o de silicato de sódio, porém devido ao melhor desempenho do silicato de lítio nos ensaios mecânicos esperava-se o oposto.

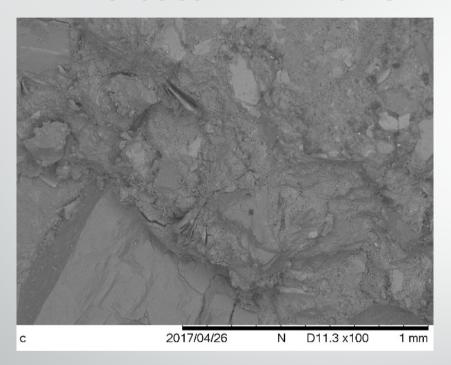
A absorção de água maior no silicato de lítio pode ser explicada devido ao lítio ser mais eletronegativo, o que atrai as moléculas de água para si e acaba por absorver mais água.

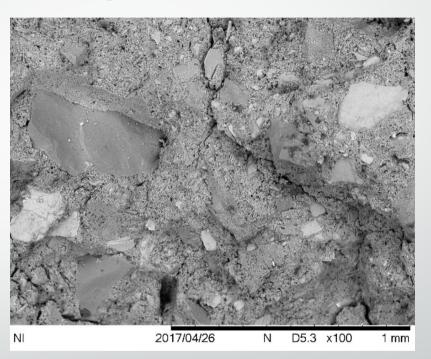

ENSAIO DE ÍNDICE DE VAZIOS


Esses resultados surpreenderam, visto que era esperado que o CP com silicato de lítio tivesse menor absorção de água, uma vez que os cristais do silicato de lítio são menores e preencheriam melhor os poros do concreto.

Também pode ser extraído dessa análise que o produto que foi desenvolvido (Silicato de sódio/lítio), obteve melhor resultado que o silicato de lítio, o que demonstra que a redução da absorção de água vem por parte do silicato de sódio, que foi o que obteve melhor resultado.

MEV – MICROSCOPIA ELETRÔNICA DE VARREDURA




Amostra Sem Adição Apresenta superfície mais "lisa"

Amostra com Silicato de Sódio Apresenta superfície "pouco rugosa"

MEV – MICROSCOPIA ELETRÔNICA DE VARREDURA

Amostra com Silicato de Lítio

Apresenta superfície "pouco rugosa"

Amostra com Silicato de Sódio / Lítio Apresenta superfície "muito rugosa"

É observada a cristalização da pasta de cimento que reagiu á presença dos silicatos, e houve aparentemente maior reação no silicato de sódio/lítio

CONCLUSÕES

- Acredita-se que a cristalografia do silicato seja o fator preponderante para explicar o melhor desempenho do silicato de lítio nos ensaios de resistência mecânica.
- No quesito dos ensaios de vazios e absorção de água, vê-se uma predominância no silicato de sódio, onde a eletronegatividade do lítio, tende a "puxar" as moléculas de água para si, e assim absorver mais água.
- No aspecto geral do Ranking dos produtos, o silicato de sódio/lítio apresentou bons resultados em todos os testes, ficando sempre com o 1º ou 2º lugares.
- É observado que o silicato de sódio/lítio, agregou a resistência mecânica do silicato de lítio e a absorção de água do silicato de sódio, o que tornou esta mistura satisfatória tanto no sentido de incremento de características, como também na questão do custo do material.

Ranking	Compressão	Tração na Flexão	Abrasão	Indice de Vazios	Absorção de Água
1 ⁰	Lítio	Sódio/Lítio	Lítio	Sódio	Sódio
2 ⁰	Sódio/Lítio	Lítio	Sódio/Lítio	Sódio/Lítio	Sódio/Lítio
3°	Sódio	Sódio	Sódio	Sem Adição	Lítio
4 ⁰	Sem Adição	Sem Adição	Sem Adição	Lítio	Sem Adição

SUGESTÕES PARA TRABALHOS FUTUROS

- 1- Avaliação da interação do silicato de lítio e silicato de sódio em uma composição de 70% Sódio e 30% Lítio.
- 2- Avaliação da interação entre o Silicato de Sódio e o Fluorsilicato de Magnésio, outro produto que já vem sendo usado para aumento de resistência a abrasão já que existem poucos estudos sobre este composto com esta finalidade.

BIBLIOGRAFIA

- SMITH, F. L. Effects of various surface treatment using magnesium and zinc fluorsilicate crystals on abrasion resistence of concrete surfaces. Concrete laboratory report C-819. Bureau of reclamation, 1956.
- Senço, Wlastermiler de, 1929 Manual de técnicas de pavimentação: volume 1/ Wlastermiler de Senço. 2 de. Ampl. São Paulo: Pini, 2007.
- Balbo, José Tadeu Pavimentos de concreto / José Tadeu Balbo. São Paulo: Oficina de Textos, 2009.
- Rodrigues, Públio Penna Firme Manual de pisos industriais: fibras de aço e protendido / Públio Penna Firme Rodrigues. São Paulo: Pini, 2010.
- Rodrigues, Públio Penna Firme Manual Gerdau de pisos industriais / Públio Penna Firme Rodrigues, Silvia Maria Botacini, Wagner Edson Gaspareto. São Paulo: Pini, 2006.
- Rodrigues, Públio Penna Firme Parâmetros de dosagem do concreto. 2 edição, Associação brasileira de cimento Portland São Paulo: 1995.
- SILICATOS SILVA, ANDRÉ LUIS SILVA DA Link: http://www.infoescola.com/quimica/silicatos/ Acessado em: 09/10/2016 6:30
- ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS: NBR 11801: Argamassa de alta resistência mecânica para pisos. Rio de Janeiro, 1992.
- ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS: NBR 12042: Materiais inorgânicos Determinação do desgaste por abrasão Método de ensaio. Rio de Janeiro, 1992.
- ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR5739: Concreto -Ensaio de compressão de corpos-de-prova cilíndricos. Rio de Janeiro, 2003.
- ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NM67: Ensaio de Abatimento do Concreto. Rio de Janeiro 2003.
- ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR5738: Moldagem e Cura de corpos-de-prova cilíndricos ou prismáticos de concreto. Rio de Janeiro, 2003.
- ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR7211: Agregado para concreto. Rio de Janeiro, 2005.
- ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR12655: Concreto Preparo, controle e recebimento. Rio de Janeiro, 2006.
- ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR6118: Projeto de estruturas de concreto. Rio de Janeiro, 2004.
- ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR9778: Absorção de Áqua por Índice de Vazios. Rio de Janeiro, 2009.
- BOTELHO, M.; Marchetti, O. Livro de Concreto: Concreto Eu Te Amo. 7ª ed., São Paulo: Editora Blucher Ltda., 2012, 726p.
- CALLISTER JR, W. D. Ciência e engenharia de materiais. 7ª ed. Rio de Janeiro: LTC Livros Técnicos e Científicos Editora S.A., 2007.
- SILVA, CRISTINA VITORINO DA Contribuição ao estudo do desgaste superficial por abrasão em concretos empregados em pisos Cristina Vitorino da Silva, 2011.
- SILVA, CRISTINA VITORINO DA Estudo da influência das propriedades relacionadas à superfície e à matriz na resistência à abrasão de concretos para pisos / Cristina Vitorino Silva, 2015.
- VIECILI, FÁBIO ANDRÉ ; CREMONINI, RUY ALBERTO Influência da utilização dos endurecedores de superfície na resistência à abrasão de pisos industriais de concreto Anais do 52º Congresso Brasileiro do Concreto, 2010.
- MULLER, LEONARDO Manifestações patológicas em pisos de concreto: Avaliação em garagens de edifícios residenciais da Grande Florianópolis / Leonardo Muller; orientador, Wellington Longuini Repette Florianópolis, SC, 2014.