



# ESTRUTURAÇÃO DE PROCEDIMENTO PARA REPARO EM TUBULAÇÕES DE FERRO FUNDIDO E AÇO UTILIZANDO SOLDAGEM COM ELETRODO ESPECIAL

Carlos Henrique Reis dos Santos

Orientador Prof<sup>o</sup>. Dr. Alexandre Fernandes Habibe Coorientador Prof<sup>o</sup>. Dr. Roberto de Oliveira Magnago

> Volta Redonda 2019





### ESTRUTURA DA APRESENTAÇÃO:

- 1. INTRODUÇÃO
- 2. OBJETIVOS
- 3. REFERENCIAL TEÓRICO
- 4. MATERIAIS E MÉTODOS
- 5. RESULTADOS E DISCUSSÃO
- 6. CONCLUSÕES





3

### 1. INTRODUÇÃO

- ✓ Dificuldades nas soldas em Ferro Fundido Cinzento.
  - ✓ Obtenção grau satisfatório.
- ✓ Substituição das junções com chumbo.
  - ✓ Substituição para processo com arco elétrico.
- ✓ Situação atual.
  - ✓ Maioria de tubulação em Ferro Fundido Cinzento.





Δ

- ☐ Após a escavação, é montado a infraestrutura de acesso a tubulação.
- □ Com a infraestrutura, é posicionado o escoramento para evitar o desmoronamento do local.









5

□ A Contratada na oficina, faz a fabricação das bolsas e todos acessórios necessários para o reparo da tubulação.















6

☐ Em seguida é processado o acabamento do chumbo derretido na bolsa;













6

☐ Derretimento do Chumbo e acabamento na bolsa;









#### 2. OBJETIVOS

#### 2.1 Geral

Desenvolver um procedimento operacional, como ferramenta para modificar o processo hoje existente (Brasagem) de reparo de tubulações de ferro fundido Cinzento de forma a aumentar a confiabilidade no reparo e reduzir os custos com o retrabalho nas bolsas de chumbo utilizadas na Brasagem.

7





8

#### 2.2 Específicos

- ✓ Apresentar conceitos da **estrutura e propriedades** do ferro fundido, especificamente do ....**cinzento**, usado nas tubulações da planta siderúrgica estudada, voltados para a ....soldagem deste tipo de material.
  - ✓ Desenvolver o fluxograma do processo de soldagem utilizando consumível apropriado na soldagem, de forma a buscarmos **novo patamar** neste processo de reparo, tendo em vista as tentativas de soldagem com **eletrodos E8018**.
    - ✓ Caracterização das soldas: Ferro Fundido X Ferro Fundido cinzento Ferro fundido cinzento X Aço através da Microscopia Eletrônica de Varredura e Microdureza Vickers das amostras de soldas.
      - ✓ Comparar estes resultados obtidos com as necessidades existentes, de forma a garantir uma maior **qualidade** nos reparos destas tubulações.



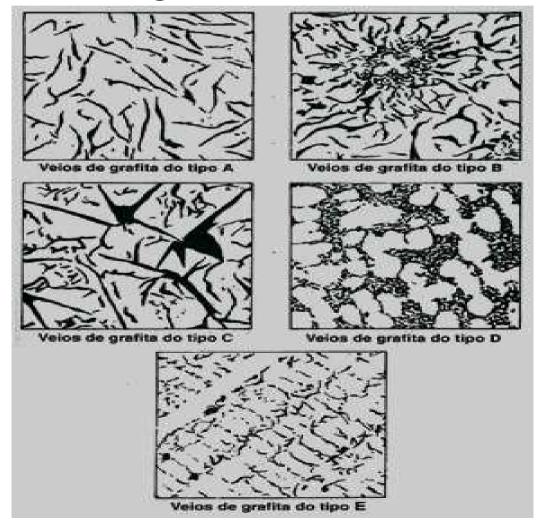


9

### 3. REFERENCIAL TEÓRICO

#### 3.1 Ferro Fundido Cinzento

- > A definição de ferro fundido :
  - Família de Ferro Fundido Cinzento.


| 71                 |           |           | Composição química | , %         |             |
|--------------------|-----------|-----------|--------------------|-------------|-------------|
| Tipo               | С         | Si        | Mn                 | S           | Р           |
|                    |           |           |                    |             |             |
| Branco             | 1,8 / 3,6 | 0,5 / 1,9 | 0,25 / 0,80        | 0,06 / 0,20 | 0,06 / 0,20 |
| Maleável           | 2,2 / 2,9 | 0,9 / 1,9 | 0,15 / 1,20        | 0,02 / 0,20 | 0,02 / 0,20 |
| Cinzento           | 2,5 / 4,0 | 1,0 / 3,0 | 0,20 / 1,00        | 0,02 / 0,25 | 0,02 / 1,00 |
| Nodular            | 3,0 / 4,0 | 1,8 / 2,8 | 0,10 / 1,00        | 0,01 / 0,03 | 0,01 / 0,10 |
| Grafita compactada | 2,5 / 4,0 | 1,0 / 3,0 | 0,20 / 1,00        | 0,01 / 0,03 | 0,01 / 0,10 |





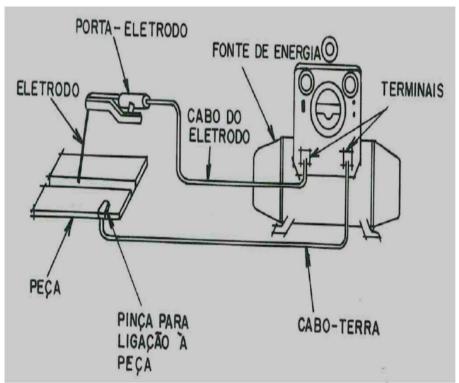
10

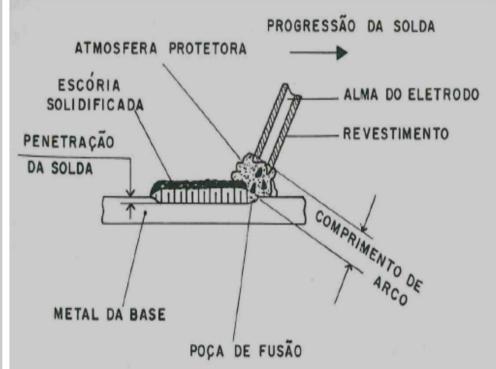
# Microscopia do Ferro Fundido Cinzento e suas categorias dos veios de grafita (Norma ASTM A247)





Fonte: Vicente Chiaverini, 2008 [29]




11

### 3.2 Processo de Soldagem com Eletrodo Revestido

- □ Soldagem em arco elétrico com eletrodo Revestido (Shielded Metal Arc Welding SMAW)
  - Conhecida também como soldagem manual a arco elétrico(MMA)





Fonte: Wainer, Emílio e Mello (1992) [46]





12

### 3.3 Variáveis Elétricas na Soldagem

- ❖ Para obtermos a qualidade de soldagem, precisa-se considerar as variáveis de processo:
  - ❖ A Tensão de Arco.

- ❖ A corrente de soldagem.
- ❖ A velocidade de avanço.
- As dimensões do eletrodo.
- ❖ O ângulo do eletrodo em relação à peça.

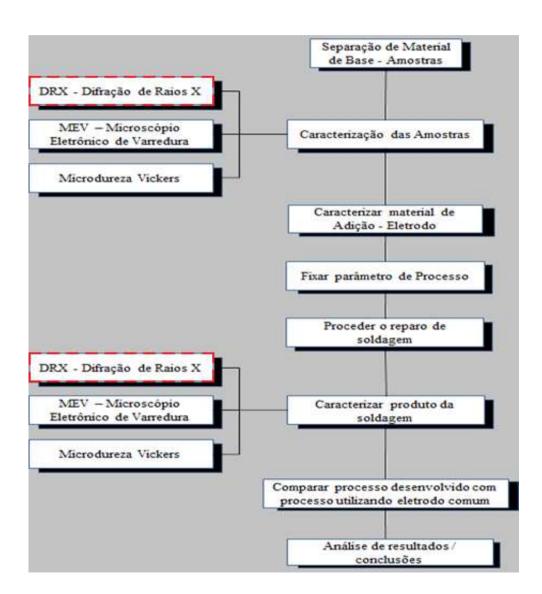




13

### 3.4 Formação de trincas em soldas

- Características prejudiciais que aparecem nas junções.
  - Em Ferro Fundido: Aumenta devido a Formação de martensita metal de adição, na zona afetada pelo calor (ZTA), assim como o aparecimento de carbonetos de ferro na interface que permeiam o metal base e o rebordo.
  - Motivações para aparecimento de trincas:
    - Formation Tensões de tração em material **fragilizado**, incapaz de se deformar plasticamente para absorver estas tensões (tratamentos térmicos ou elementos nocivos hidrogênio).
    - > Tensões de tração elevadas devido as **expansões e contrações térmicas** localizadas (ciclo térmico de soldagem).






### 4. MATERIAIS E MÉTODOS

✓ Plano de Trabalho





14





Materiais 15

### 4.1 Obtenção das amostras

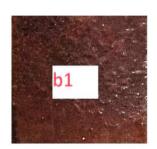
| Identificação com Alfa-<br>Numérico | Características Supostas | Observações             |  |  |  |
|-------------------------------------|--------------------------|-------------------------|--|--|--|
| a1                                  | Aço Carbono              | Retirada das tubulações |  |  |  |
| a2                                  | Ferro Fundido (FoFo)     | Retirada das tubulações |  |  |  |
| a3                                  | Ferro Fundido (FoFo)     | Retirada das tubulações |  |  |  |
| b1                                  | Aço Carbono              | Retirada das tubulações |  |  |  |
| b2                                  | Ferro Fundido (FoFo)     | Retirada das tubulações |  |  |  |
| b3                                  | Ferro Fundido (FoFo)     | Retirada das tubulações |  |  |  |





16

### 4.2 Obtenção das amostras




- Amostra de Aço Carbono:
  - a1 e b1
- Amostra de Ferro Fundido:
  - a2 e a3
  - b2 e b3



















18

### 4.3 Eletrodo de Níquel -Xyron 2224

# 4.4 Eletrodo AWS E8018 - Baixa Liga

| Elemento | (%)         | Elemento | (%)   |
|----------|-------------|----------|-------|
| C        | 1.00 - 1.50 | С        | 0.06  |
| Si       | 1.00 máx    | Si       | 0.45  |
| Mn       | 1.00 máx    | Mn       | 0.7   |
| Р        | 0.00 - 0.04 | Мо       | 0.5   |
| S        | 0.00 - 0.02 | Cr       | 1.0   |
| Fe       | 8.00 – 9.00 | Fe       | Resto |
| Ni       | Resto       |          |       |





#### Métodos

### 4.5 Procedimento de Soldagem das Amostras

- Limpeza da área:
  - ✓ Usar solução clorada para retirada de graxa, vestígio de areia ou outras impurezas;
  - ✓ Retirar/queimar óleo ou outros fatores que prejudicam a solda e sua qualidade;
- Se necessário realizar chanfro:
  - ✓ Com esmerilhadeira para trincas pequenas;
  - ✓ Eletrodo de chanfro Chanfer Trode 03 (eletrodo de corte);

19





20

### 4.5.1 Procedimento de Soldagem das Amostras

- Usar eletrodo Xyron 2224 :
  - > Soldagem a "frio" (Baixo aporte térmico) com cordões
    - ✓ Realizar pré aquecimento entorno de 100ºC retirando a umidade;
    - ✓ Realizar passes curtos;
    - ✓ Alternados;
    - ✓ Martelados;
- Este tipo de eletrodo possibilita soldagem em todos as posições;
- Manter a temperatura adjacente baixa;
- Soldar abrigado de correntes de ar de forma a proporcionar o pós aquecimento com resfriamento bem lento;
- Dar ênfase nos cordões de solda que deverão ser curtos e martelados entre eles;
- Antes de dar o segundo passe limpar a escoria e remover toda escoria para que a região fique limpa antes de abrir o arco de solda.





21

### 4.6 Soldagem das Amostras

✓ Após caracterizações nas amostras foram efetuadas as soldagens.

#### ✓ Parâmetros Utilizados:

✓ Tensão: 10 Vac

✓ Corrente: 60 A

✓ Velocidade: adequada

✓ Eletrodo de 2,5 mm







23

### 4.6.1 Soldagem das Amostras

> Produto final obtido com as amostras.

| Identificação com<br>Alfa-Numérico | Características Supostas   | Observações                                     |
|------------------------------------|----------------------------|-------------------------------------------------|
| a1 X a2                            | União Aço Carbono com FoFo | Soldagem com eletrodo de Níquel<br>Xyron – 2224 |
| a2 X a3                            | União Fofo com FoFo        | Soldagem com eletrodo de Níquel<br>Xyron – 2224 |
| b1 X b2                            | União Aço Carbono com FoFo | Soldagem com Eletrodo Baixa Liga<br>E 8018      |
| b2 X b3                            | União Fofo com FoFo        | Soldagem com Eletrodo Baixa Liga<br>E 8018      |









### 4.7 Obtenção das Amostras

➤ Depois que as amostras foram limpas e cortadas em tamanhos apropriadas, estas foram embutidas para realização dos ensaios metalográficos.



Corpos de prova







25

### 4.8 Cortadora Metalográfica

#### **Condições:**

✓ Foi utilizado uma Cortadora Metalográfica Teclago C M40 com disco abrasivo.







26

### 4.9 Embutidora Metalográfica

#### **Condições:**

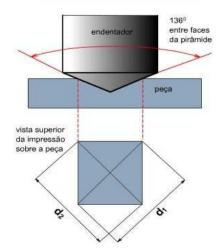
- ✓ Embutidora Metalográfica Arotec PRE 30Mi, num processo de vinte e dois minutos de aquecimento até atingir 165ºC com uma pressão de trabalho de 130 Kgf/cm² e num outro processo de dezoito minutos de resfriamento até atingir 40ºC.
- ✓ Embutidas a quente, utilizando um pó preto baquelite, cuja composição é resina fenólica, hexametileno, serragem, talco, estearato de cálcio e pigmento.







27


#### 4.10 Microdureza Vickers

#### **Condições:**

- ✓ Utilizamos o Microdurômetro Time DHV-1000
- ✓ Endentador piramidal de diamante de base quadrada com ângulo de 136º entre as faces e uma objetiva de 400x para endentar e visualizar os pontos de micro dureza Vickers.



Impressão do endentador Vickers







28

### 4.11 Microscopia Eletrônica de Varredura

#### **Condições:**

- ✓ Utilizamos o Microscópio Eletrônico de Varredura Hitachi TM3000 e um software TM-3000.
- ✓ Caracterizar micro estruturalmente os materiais com ampliações maiores e mais detalhadas dos ferros fundidos e dos aços carbonos.







29

### 5. RESULTADOS e DISCUSSÃO

#### 5.1 Avaliação das modificações Microestruturais promovidas pela Soldagem

5.1.1 - Avaliação das Microdurezas

5.1.2 - Avaliação das Microestruturas através do MEV



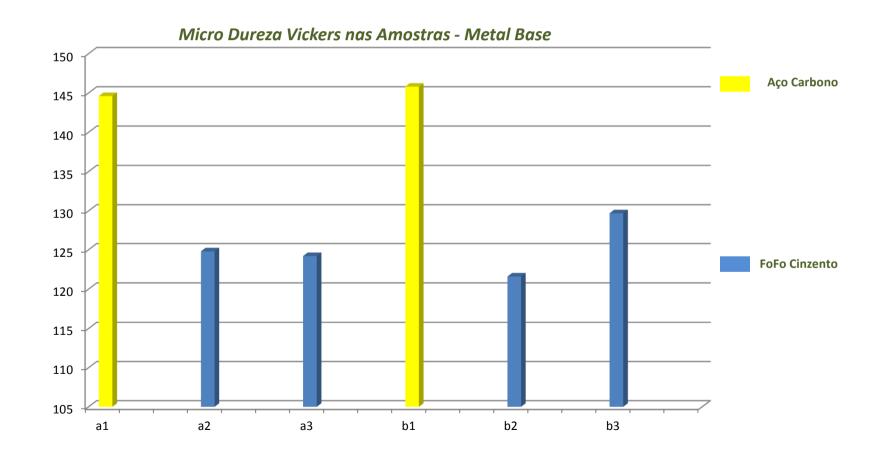


29

#### 5.1.1 Avaliação das Microdurezas promovidas pela Soldagem

#### 5.1.1.1 Microdureza Vickers no metal base (amostras colhidas).




|         |               |                  | Micro Dureza V      | ickers (HV 0,3) |       |
|---------|---------------|------------------|---------------------|-----------------|-------|
| Amostra | Carga (N)     | Identação (15 s) | Medições Metal Base | Média           |       |
|         |               | 1                | 147,1               |                 |       |
| a1      | 2,94 N        | 2                | 143,3               | 144,6           |       |
|         |               | 3                | 143,3               |                 |       |
|         |               | 1                | 122,1               |                 |       |
| a2      | 2,94 N        | 2                | 124,9               | 124,8           |       |
|         |               | 3                | 127,3               |                 |       |
|         |               | 1                | 123,5               |                 |       |
| a3      | 2,94 N        | 2                | 125,4               | 124,2           |       |
|         |               | 3                | 123,7               |                 |       |
|         | 2,94 N        | 2,94 N           | 1                   | 143,9           |       |
| b1      |               |                  | 2,94 N              | 2               | 147,1 |
|         |               | 3                | 146,5               |                 |       |
|         |               |                  | 1                   | 122,8           |       |
| b2      | 2,94 N        | 2                | 121,5               | 121,6           |       |
|         |               | 3                | 120,6               |                 |       |
|         |               | 1                | 128,0               |                 |       |
| b3      | 2,94 N 2<br>3 |                  | 130,7               | 129,7           |       |
|         |               |                  | 130,5               |                 |       |





30

### 5.1.1.2 Microdureza Vickers no metal base (amostras colhidas).

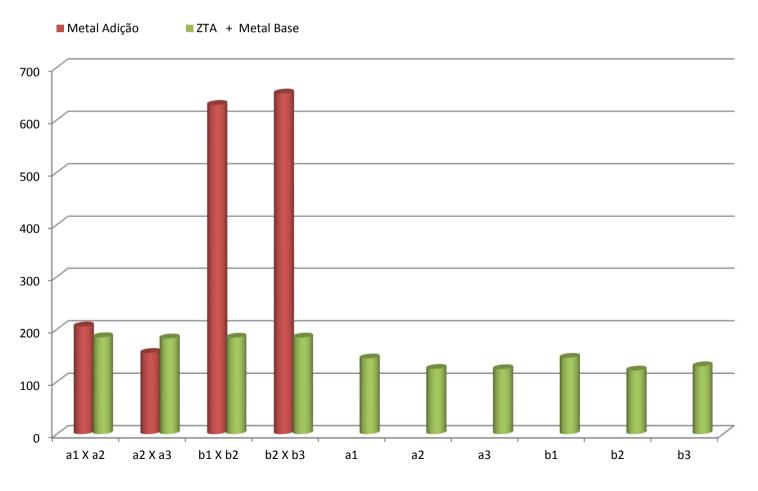






### 5.1.1.3 Microdureza Vickers na Região da solda




| Amostras das Soldas           | Medições             | Méd           | Média         |           |     |  |
|-------------------------------|----------------------|---------------|---------------|-----------|-----|--|
| Eletrodo Niquel<br>XYRON 2224 | Micro Dureza Vickers | D             |               |           |     |  |
|                               | Metal Adição         | 207,8         |               |           |     |  |
|                               | Metal Adição         | 201,4         | Metal Adição  | 205,5     | 2,9 |  |
| a1 X a2                       | Metal Adição         | 207,3         |               | TANA MESS |     |  |
| (aço x FoFo)                  | ZTA                  | 186,9         |               |           |     |  |
|                               | ZTA                  | 182,7         | ZTA           | 185       | 1,7 |  |
|                               | ZTA                  | 185,5         | Ĭ,            |           |     |  |
|                               | Metal Adição         | 156,5         |               |           |     |  |
|                               | Metal Adição         | 154,3         | Metal Adição  | 155,1     | 1,0 |  |
| a2 X a3                       | Metal Adição         | 154,6         |               |           |     |  |
| (FoFo x FoFo)                 | ZTA                  | 187,2         |               | 182,7     |     |  |
|                               | ZTA                  | 180,7         | ZTA           |           | 3,2 |  |
|                               | ZTA                  | 180,2         |               |           |     |  |
| Eletrodo E 8018               | Mic                  | ro Dureza Vic | kers (HV 0,3) |           |     |  |
|                               | Metal Adição         | 628,6         |               | 628,6     |     |  |
|                               | Metal Adição         | 631,2         | Metal Adição  |           | 2,2 |  |
| b1 X b2                       | Metal Adição         | 625,9         |               |           |     |  |
| (aço x FoFo)                  | ZTA                  | 187,3         |               |           |     |  |
|                               | ZTA                  | 183,1         | ZTA           | 184,1     | 2,3 |  |
|                               | ZTA                  | 181,9         |               |           |     |  |
|                               | Metal Adição         | 647,5         |               |           |     |  |
|                               | Metal Adição         | 653,1         | Metal Adição  | 650,3     | 2,3 |  |
| b2 X b3                       | Metal Adição         | 650,2         |               |           | ~   |  |
| (FoFo x FoFo)                 | ZTA                  | 189,4         |               |           |     |  |
| 7,000                         | ZTA                  | 180,2         | ZTA           | 184,4     | 3,8 |  |
|                               | ZTA                  | 183,5         |               | 10        |     |  |





32

#### 5.1.1.4 Microdureza Vickers na região da solda



- Diminui pico temperatura zona fundida;
- Elemento grafitizante;
- Melhora tenacidade solda;

Quantidade de martensita e carbonetos : Composição química e do ciclo térmico de soldagem.





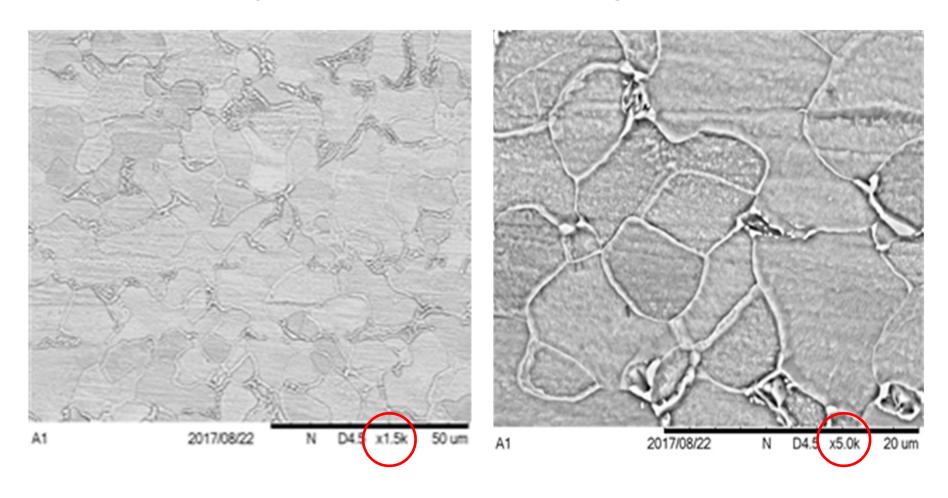
33

### 5.1.1.5 Microdureza Vickers nas soldagem das amostras

#### Características do ferro fundido Cinzento e Aço 1020 / 1045

|                                 |              | Comp | osição Qu | ıímica (% p  | eso)         |                         | Propriedade                    | Propriedades Típicas |  |
|---------------------------------|--------------|------|-----------|--------------|--------------|-------------------------|--------------------------------|----------------------|--|
| Tipo de Ferro<br>Fundido        | С            | Si   | Mn        | Р            | S            | Dureza (HB)             | Limite de<br>Resistência       | Ductilidade          |  |
| Cinzento<br>Norma DIN.<br>GG 10 | 3,40<br>3,70 | 2,30 | 0,50      | 0,25<br>Max. | 0,15<br>Max. | Máx. entre 100 e<br>150 | 20 a 60 ksi<br>(130 a 410 Mpa) | Muito baixa          |  |

| CLASSIFICAÇÃO             |           | <b>/S A5.5</b><br><b>A-5.5</b> (Ed.2                                                                                                                           | 013)   | DIN 8575      |                   |    | E                  | ELETRODO REVESTIDO |        |
|---------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|-------------------|----|--------------------|--------------------|--------|
|                           | E8018-B2  |                                                                                                                                                                |        | E CrMo 1 B 26 |                   |    | ELETRODO REVESTIDO |                    |        |
|                           |           |                                                                                                                                                                |        |               |                   |    |                    |                    |        |
| COMPOSIÇÃO<br>QUÍMICA (%) | С         | Mn                                                                                                                                                             | Si     |               | Мо                | Cr |                    | P                  | s      |
|                           | 0,05-0,12 | < 0,90                                                                                                                                                         | < 0,80 |               | 0,40-0,65 1,0 - 1 |    | ,5                 | < 0,03             | < 0,03 |
|                           |           |                                                                                                                                                                |        |               |                   |    |                    |                    |        |
| OBSERVAÇÕES               | Dureza em | Temperatura de preaquecimento e interpasses: 160 a 190°C  Dureza em uma camada sobre aço 1020: 180 - 220 HB  Dureza em uma camada sobre aço 1045: 275 - 325 HB |        |               |                   |    |                    |                    |        |

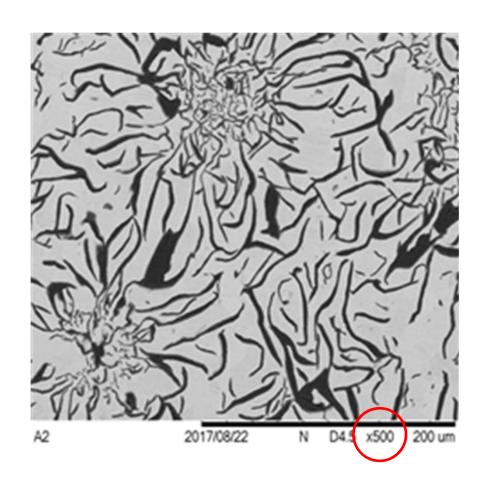





34

### 5.1.2 Análise Metalográfica Eletrônica de Varredura

#### 5.1.2.1 Microscopia Eletrônica de Varredura no Aço Carbono – a1



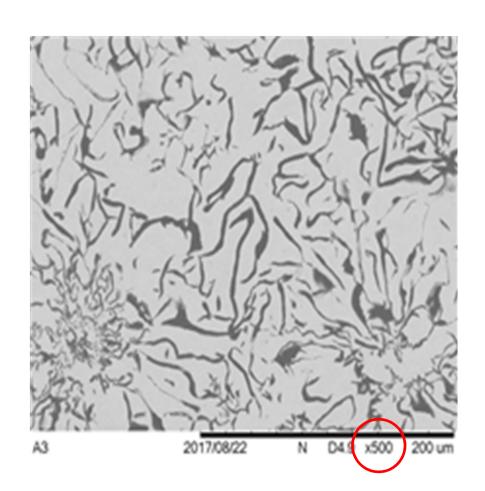


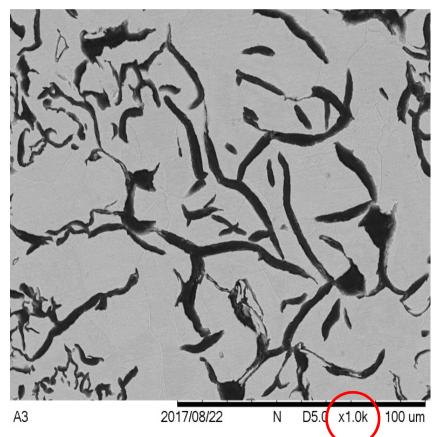



35

#### 5.1.2.2 Microscopia Eletrônica de Varredura no Ferro Fundido Cinzento – a2





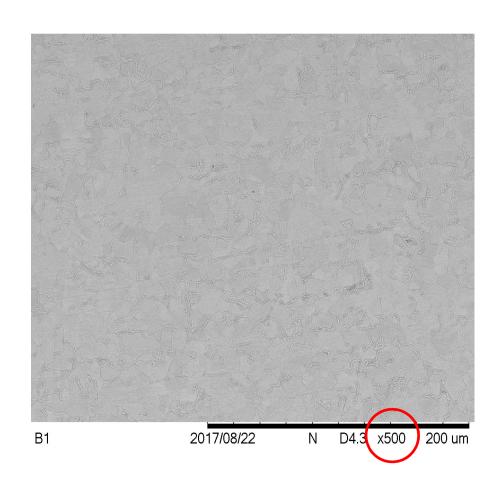



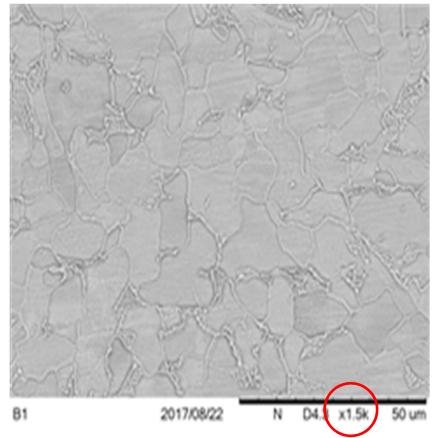



36

#### 5.1.2.3 Microscopia Eletrônica de Varredura no Ferro Fundido Cinzento – a3





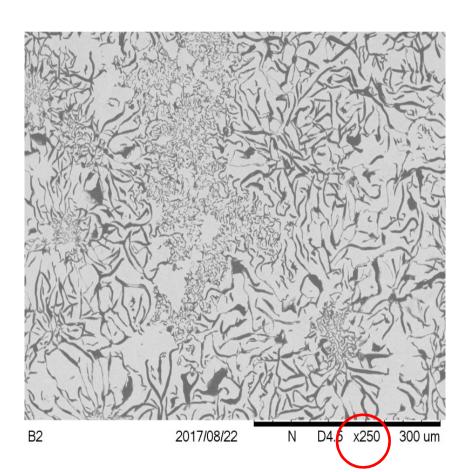



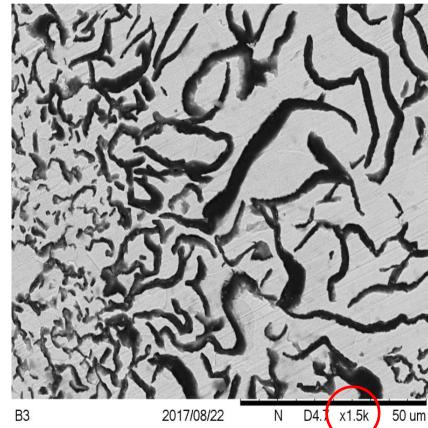



37

### 5.1.2.4 Microscopia Eletrônica de Varredura no Aço Carbono – b1





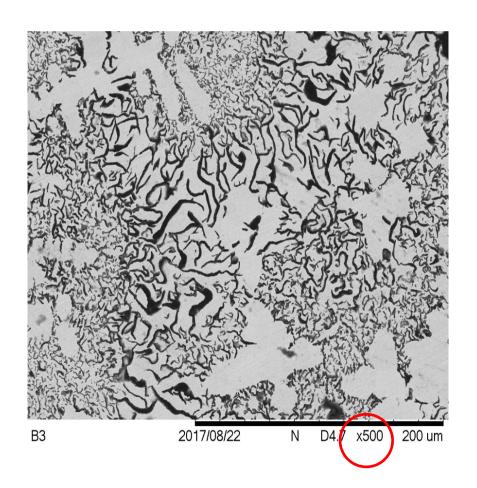



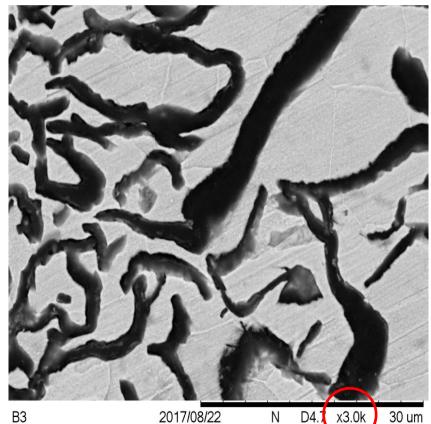



38

#### 5.1.2.5 Microscopia Eletrônica de Varredura no Ferro Fundido Cinzento – b2







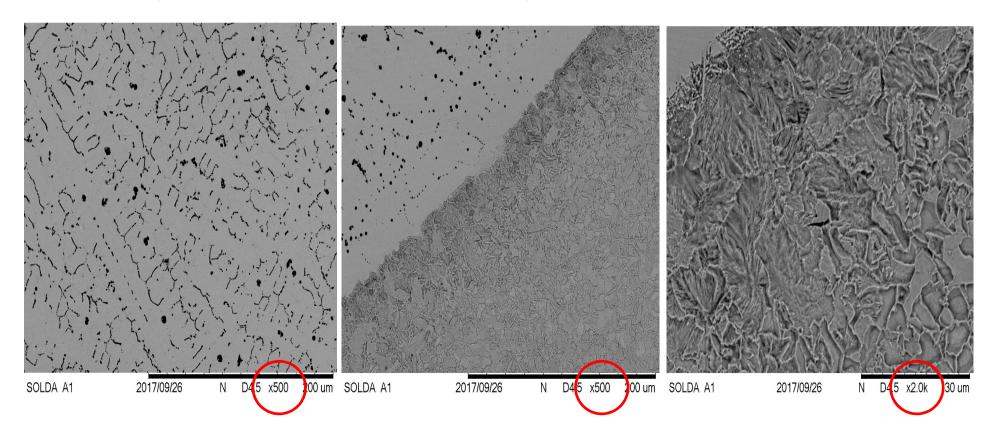

39

#### 5.1.2.6 Microscopia Eletrônica de Varredura no Ferro Fundido Cinzento – b3










40

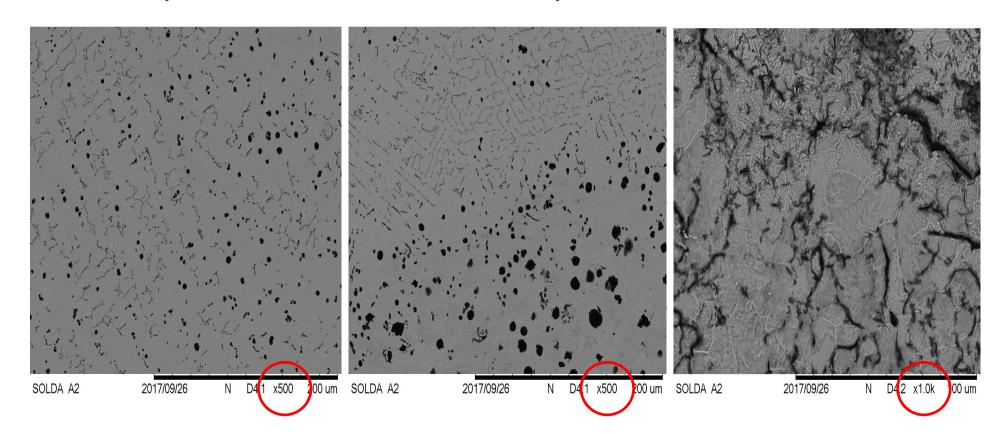
### 5.1.2.7 MEV na Soldagem com eletrodo de Níquel— a1 x a2 ou Aço Carbono X Ferro Fundido Cinzento

#### **Utilizando procedimento**

Metal Adição ZTA + Metal Adição ZTA








41

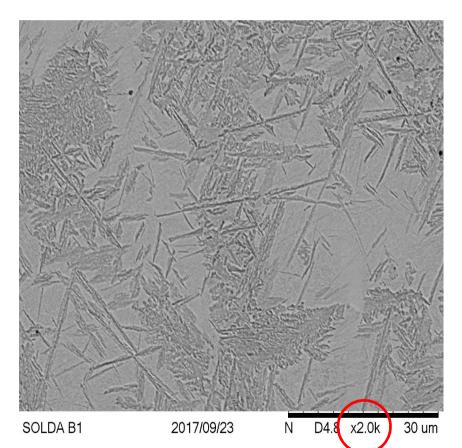
### 5.1.2.8 MEV na Soldagem com eletrodo de Níquel – a2 x a3 ou Ferro Fundido Cinzento X Ferro Fundido Cinzento

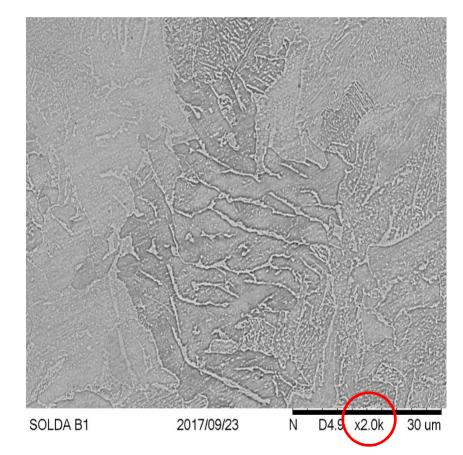
#### **Utilizando procedimento**

Metal Adição ZTA + Metal Adição ZTA









4

### 5.1.2.9 MEV na Soldagem com eletrodo AWS E8018 – b1 x b2 ou Aço Carbono X Ferro Fundido Cinzento

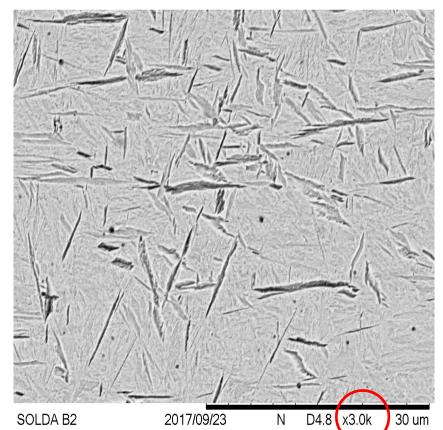
**Utilizando procedimento convencional** 

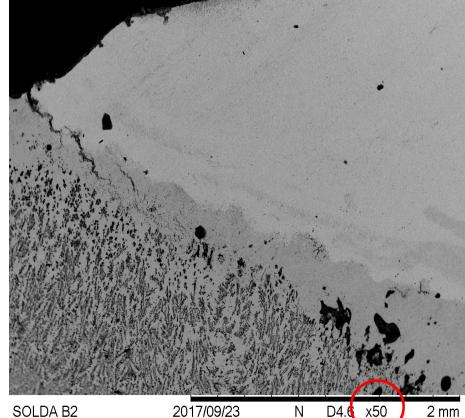
Metal Adição ZTA











43

### 5.1.2.10 MEV na Soldagem com eletrodo AWS E8018 – b2 x b3 ou Ferro Fundido Cinzento X Ferro Fundido Cinzento

**Utilizando procedimento convencional** 

Metal Adição ZTA









44

### 6. CONCLUSÕES

#### A partir dos resultados obtidos é possível concluir que:

 A soldagem com eletrodo Xyron 2224 encaminhou uma dureza no metal de adição e na ZTA, equiparada aos dois metais bases utilizados.

 A soldagem com eletrodo convencional AWS E8018, encaminhou uma dureza bem maior no metal de adição e de forma intermediária na ZTA.

 O estudo aponta para a utilização em FoFo Cinzentos de eletrodos Xyron, assim como um procedimento adequado de forma a garantir o resfriamento lento das junções a fim de evitar o surgimento de martensita.





44

### 7. SUGESTÕES PARA TRABALHOS FUTUROS

➤ O trabalho experimental desenvolvido nesta dissertação pode e deve ser complementado utilizando-se o DRX para avaliação das características complementares do metal base, de adição e da ZTA.

✓ Obs.: Não incluímos esta análise no presente trabalho em função da indisponibilidade do equipamento